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A stochastic spring-block model with both global correlation and local interaction is considered in
terms of the cellular automaton. It is shown that there is a scaling relation D(A) « Afexp(—A/A,) be-
tween the slip size A and its probability D(A) with a universal exponent £= —1.5. The value of A, is
nonuniversal. The behavior of this model is surprisingly close to the Gutenberg-Richter law and that of
the recent experiment [H. J. S. Feder and J. Feder, Phys. Rev. Lett. 66, 2669 (1991)].

PACS number(s): 05.45.+b, 05.40.+j, 91.30.Px

The spring-block model was originally considered by
Burridge and Knopoff to be a realistic model of earth-
quakes [1]. Based on statistics for earthquakes, Guten-
berg and Richter [2] in 1954 gave a scaling law, accord-
ing to which the number d{) of observed earthquakes
with released energy between E and E +dE was

dQ<EBJE . (1)

A thorough reexamination of earthquake catalogs has re-
cently concluded that small earthquakes are distributed
with B=~1.5-1.6, whereas large earthquakes of magni-
tude 7 or above have a large B=~2 [3,4]. Since Bak,
Tang, and Wiesenfeld introduced the concept of self-
organized criticality [5], the spring-block models have
also served as a paradigm for this concept [6—8]. Recent-
ly some authors [9] studied experimentally a stick-slip
process of dragging sandpaper across a carpet. In their
experiment the reduction of force in a slip event had a
power-law probability distribution, which was similar to
the Gutenberg-Richter law (1) for earthquakes. One may
find that the global correlation was introduced in their
experimental setup, though it was not explicitly men-
tioned. However, to our knowledge, most of the spring-
block models studied up to the present have been restrict-
ed to the case without global correlation. The role of glo-
bal correlation has not yet been fully understood. In a re-
cent work [10] we proposed a globally coupled string-
block model where the local interaction was ignored.
The probability D (A) of the slip with size A in that mod-
el could exactly be calculated, based on the approach in
Ref. [11]. In this Rapid Communication we propose a
general spring-block model that includes both the local
interaction and the global correlation. Self-organized cri-
ticality appears in this model. The distinctive behavior in
this model is that the probability distribution of the slip
size conforms quite closely to the Gutenberg-Richter law.

Consider a total number N of blocks frictionally con-
tacting a fixed carpet (see Fig. 1). A rigid bar is connect-
ed to each block by individual springs. These springs are
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assumed to have the same elastic modulus k,. The bar is
also connected to a trunk spring with the elastic modulus
k;. This trunk spring corresponds to the nylon fishing
line in the experimental setup of Ref. [9]. The tip A of
the trunk spring is drawn very slowly. In addition,
another set of springs with the elastic modulus «; con-
nects each block to its two nearest neighbors. If every
block sticks to the carpet the force exerted on the bar is

N
F=x\(r—z)=«, 3 (z—x;), (2)

i=1
where r, z, and x; are the positions of tip 4, the bar, and
the ith block, respectively, as they are calculated from
properly chosen origins. The initial values of x;’s may be

different from one another. The static friction of the ith
block is

[fi=Kz —x;)trsy(x; _+x; 01— 2x;) . (3)

In this paper the periodic boundary condition xy,=x, is
assumed, so every block has two nearest neighbors. It is
quite clear that F= SN_, f,. As we steadily draw tip 4,
the force F and 7, z, and all f;’s increase with time uni-
formly until one block, say the jth one, experiences a
force f;, which reaches the maximum friction f;. Then
this block will move to a new position, say x j*, and stick
there. The static friction between the jth block and the
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FIG. 1. Sketch of the spring-block system under considera-
tion.
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carpet at the new position is assumed to be f*€(0,f,)
before the bar moves. We know from Eq. (3) that
x=x;+(f;—f])/(k;+2K;). The bar then moves a lit-
tle (say dz), though tip A4 does not move. We have from
Eq. (2) that
Ky(xf—x;)
dz=——"—2—, 4
z K1+K2N ( )
and from Eq. (3) that the value of f; also changes to
fi=f}+rdz. By using Eq. (4 we have that
K,dz=au /(1+2B)N; here a=1/(1+«,/k,N), B=kK3/kK,,
and

u=f,—fr. (5)

By properly choosing the unit of length, the maximum
friction between each block and the carpet is taken to be
unity, i.e., f, =1. Therefore we get the rules for the cellu-
lar automaton

L fxp_2 >
=it qpwt e fi3!
a+NpB ..
4@ ND =j+
fit gyt TTIE
l f,- + m:; otherwise . (6)

The value of f}* is chosen randomly in the interval [0,1]
through a given function py(f), which is called the pre-
strain distribution [10]. If, after the rearrangements,
there are still some blocks with static friction larger than
the threshold, the rules (6) must be used repeatedly until
all blocks do not move anymore. Before tip 4 of the
trunk spring is drawn further, the total number A of
blocks that are simulataneously moved in a chain reac-
tion is called the size of the slip. Notice that the total
force on the bar F may decrease after the automaton
rules are used. The dissipation is proportional to
l—a

R 1728 (7
From the rules (6) we see that when a block slips the stat-
ic friction on every other block increases. The increment
ua/(1+2B)N corresponds to the global correlation,
while the additional increment uf/(1+28) of two
nearest neighbors is due to the local interaction. As long
as a >0 the system is globally correlated. As k;— oo the
model becomes the one-dimensional version of that in
Ref. [8], with stochastic prestrain and a different bound-
ary condition. When «;=0, i.e., B=0, it returns to the
exactly solvable case discussed in Ref. [10].

Here we have at least three different scales of time: the
time 7 4 needed for tip 4 to move a unit distance, the re-
laxation time 7 for the redistribution of the load among
the springs, and the time 7¢ needed for the moving block
to re-adhere to the carpet. Since the time interval be-
tween earthquakes is much larger than the actual dura-
tion of an earthquake, a common feature of the theoreti-
cal spring-block models is that both 7 and 7g are much
smaller than 7 ,. In the present discussion we consider
the case of ¢ <<y, i.e., the moving block will re-adhere

to a new place before the springs rearrange their strain
distribution. The alternative case 74 >>7x will be dis-
cussed elsewhere.

Let us consider the scaling behavior of the distribution
D (A). When B=0 we have the asymptotic expression
[10]

D(A)=CAfexp(—A/Ay) (A>>1), ®)

where C =exp(0s )f 1po(r) exp(—sr)dr /V2m0s =C,,
£=—1.5, and A,={/(6s—1—Infs), with s=a/
f(l)(l——r)po(r)dr, and 6€ [0, 1]. Since Eq. (8) is correct
only for large A’s this formula might not be normalized.
The value of s is approximately equal to a for a close to
1, so we have that Ap~1/(a—1—Ina)=G,. When >0
the numerical method has to be used. The simulations
show that the distribution D (A) for large A’s can still be
expressed in the form of Eq. (8). For given values of pa-
rameters the data obtained numerically can be fitted by

In[D(A)A™¢]=—A/A,+InC (A>>1). 9)

For a given value of £ the standard least-squares fit gives
the corresponding value of A,. The value of £ is chosen
in such a way that the minimum deviation from a linear
dependence between In[D(A)A™¢] and A is obtained. It
is found that within a numerical accuracy of about +0.2,
the value £=—1.5 is universal for all parameter values.
The value of A, however, depends on the parameters a
and B. The interesting thing we found in the numerical
simulation is that the cutoff size A, can be factorized as

AO:GBG(I . (10)

The factor G, depends only on a=1/(1+«,/k,N), as
shown above, and Gy on the parameter B=x;/k,. Here
the factor Gz can be approximately expressed as
Gg~1+vB, with v=3 for $=<10. Hence Eq. (10) turns
out asymptotically to be

Ap=(1+3B)/(a—1—1na) . (11)

The numerical results confirm the independent scaling
property for @ = 0.3 and 8= 10, as shown in Fig. 2. How-
ever, when a=0.1 the results are no longer regarded as
fairly satisfactory, at least for small 3.

When B>0 we find that the coefficient C~C, in Eq.
(8). With the help of Egs. (8) and (10) the distribution
function D(A) for a variety of parameter values could,
after proper rescaling, be fitted in an universal function as

D(A) A ] , 12)

Dy 8

where ®(X)=X */?exp(—X), and D,=C,G,*"?G 3"~
The function ®(X) is universal, dependent neither on the
prestrain distribution py(f) nor the parameters a and .
The coefficient D, however, is nonuniversal. Note that
this result is corrected only for a large size of slip. The
numerical results are shown in Fig. 3. In order to show
the system size N dependence explicitly, we can obtain
from Eq. (10) that for N >>1
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FIG. 2. Dependence of A, on the values of

(1+38)/(a—1—Ina). The straight line indicates the bisector.
0,a=0.1; X,a=0.3; A, a=0.5; +,a=0.7; and &, a=0.8.

2k,(ky+3K3) 2k,
~— - . (13)
0 «? 3k,

For large N with ki, k,, and k; given we have Ajx N2
We conclude that the system displays self-organized criti-
cality, because for any values of the parameters «,, k,,
and k3 the cutoff size of the slip, A, tends to infinity as
long as N — oo; and with finite system N >>k,/k, the dis-
tribution of the slip size D(A) could be fitted by the so-
called finite-size scaling method [12] as

D(A)
N—3

A
=¢ —1\7 (14)

It is easy to find from Egs. (8) and (13) that
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FIG. 3. The slip-size distribution D(A) can be fitted by
universal scaling function ®(X). The numerical results for
3=0.0, 0.5, 1.0, 2.0, 5.0, and 10.0 are presented, where a=0.5.

¢(X)=C'X_3/2 exp( _X/Xo), with XO =2K2(K2+3K3)/K%
and C’ a constant, depending on k,, «,, and «;. More-
over, it is clear that the averaged slip size (A ) is

(A)=3 AD(A)<AL?, (15)
A=1

and that the variation of the slip size is
(<A2>—<A>2)1/2°CA8/2 . (16)

The relations (15) and (16) are also verified by numerical
experiments.

It is quite inconvenient to count the number of slipping
blocks in experiments. One could instead measure the
force on the bar, as was done in the experiment of Ref.
[9]. The force per block on the bar

1 N

N i§1 7
varies with time ¢z. The value of f falls rapidly in a slip,
and increases steadily between two slips. Numerical
simulations show that the fall §f of f is proportional to
the size of slip and that its distribution function is in
agreement in form with that of D(A), see Fig. 4. The dis-
tribution P(§f) is qualitatively the same as that in the ex-
periment on sandpaper in Ref. [9].

The infinite correlation length is a characteristic of the
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FIG. 4. (a) Force per block f vs time ¢. (b) The solid line
represents the distribution P(8f) of the fall §f of f in the slips.
In a suitable scale it is in agreement with D (A), indicated by
dots. Here a=0.5, B=1.0, and N=500. Notice that the results
are qualitatively the same as those in Ref. [9].
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criticality. We define the correlation function as

c(r)——— 2 c,(r), (17
t—l
where
1 N
¢ :7\7_ 2 x;0%; 4,

with 8x; the displacement of the ith block in the zth slip
event. The numerical calculation gives the results shown
in Fig. 5. The correlation function decays exponentially,

c(r)x<exp(—r/n) whenr<r,,

while the values of 1 and r. depend on the parameters.
When r > r, the correlation function becomes a constant.
The finite value of r, is explained by the fact that the sys-
tem is globally correlated when a>0. The value of r,
tends to infinity as a—0. 7 is called the correlation
length, which increases as a increases. A common
feature of the criticality is that the correlation length
goes to infinity. In the present model it occurs when
Ay— .

It should be mentioned that in the case of conservation
(k;=0, for instance), the system cannot stay in the stick-
slip state. In fact, the system would at last evolve into a
state where every block moves simultaneously. However,
as long as k; >0, k,>0, and k; < o, we always have R >0
for a finite-size system, and the system stays in the stick-
slip state. Alternatively, if we introduce the dissipation
of the force by taking

u=f,—f*, (18)

instead of Eq. (5), the system will stay in the critical state
for any choice of parameters.
In the above simulation we have used the uniform pre-

0.01 Hrrrrreres e ey

FIG. 5. Correlation functions ¢ (r). The calculations are car-
ried out for =10 and N =200.

strain distribution py(f)=1. We have also simulated oth-
er choices of prestrain distribution py(f). The results
show that the exponent £= —1.5 in Eq. (8) and the func-
tion ®(X) are universal, dependent neither on the pres-
train distribution py(f) nor on the parameters a and .
The values of D, and A, are nonuniversal. The result ob-
tained in the present Rapid Communication is extremely
close to the Gutenburg-Richter law if we realize that the
energy released in a slip event is proportional to the fall
of the force N§f. The simulation on a two-dimensional
spring-block system shows the results, which are qualita-
tively the same as on the one-dimensional system here,
and they will be presented elsewhere.
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